
Downloadable Resources
(One Per Class):

This activity utilises the CS Unplugged material and is released under Creative Commons CC BY-SA 4.0.

Activity P03:

Sending A Rocket
To Mars

Computer programs are all around us in
things like fitness devices, smartphones
and alarm systems. These programs
are referred to as “applications”, “apps”
or “software” and often they are nearly
invisible. In devices, software “boots up”
when you switch it on and keeps going
until you switch it off. Despite this variety,
they all work on similar principles that are
accessible to students of all ages, and this
unit explores some of the fundamental
principles in programming.

Mathematics: Numeracy,
Geometry
Literacy: Speaking

 - Arrows - csunplugged.org

 - Job Badges - csunplugged.org

Note: Be sure to print
double-sided!

What is It?

Writing a computer program involves planning what
you’re going to do: “coding” the instructions, testing
them, tracking down any bugs, and changing the
program so that it works correctly. Most substantial
programs are written by a team of people and
often the roles of design, coding and testing are
separated out. This team is usually comprised of the
Programmers (the people who write the program),
and the Testers (the people who test the program).

Why?

These Kidbots activities separate the programming
from the testing to avoid the programmer adjusting
their program on the fly and also support students
to understand that programming is about working
together, thinking through what you want to have
happen and collaborating to solve problems.

Link to Digital Technologies Curriculum

Creating a sequence of instructions for this
lesson exercises algorithmic problem solving,
as it requires students to create an algorithm to
accomplish a task. Computational algorithms are
introduced in the first Computational Thinking
Progress Outcome and are based on input, output,
storage, sequence, selection and iteration.

 - Left and Right Cards - csunplugged.org

 - Grid - csunplugged.org

Classroom Resources:
Blocks, clipboards,

handheld whiteboards,
whiteboard pens,
paper and pens.

Discovery

This activity utilises the CS Unplugged material and is released under Creative Commons CC BY-SA 4.0.

Activity Background

Ideally this lesson should take place around a large grid such as:

• An outside painted chess board.
• Grids in your classroom carpet.
• Making masking tape grids on the floor in your classroom.
• Draw a chalk grid either in your classroom or outside.

Ask for two volunteers and give yourself and them the roles of:
Role 1: The Developer (who writes the program) - The teacher will model this initially
Role 2: The Tester (who instructs the Bot and looks for bugs)
Role 3: The Bot (who runs the program)

The Activity

Teacher: “I’m going to be the
programmer, but I’m going to need
your help.” “We are programming
“the Bot”, not just remote controlling
it, because ALL the instructions are
written before the Bot can follow
those instructions.

“Debugging is fun because you get
a chance to change your program
after it’s finished when you notice
it’s not working how you thought it
should.”

“It’s my job to write down clear
instructions for the Bot, who is going
to be (say the person’s name) and
“The Tester” (who is...) is going to give
the instructions to the Bot and be on
the lookout for bugs.”

“First of all I need to decide, what programming language are we are going to use for
this? I’ve chosen arrows to represent move forward, turn left and turn right.”

If students aren’t sure about the left and right direction, you can print the “left and right
hand cards”, and stick them to their shoes or have them hold them in their hands.

Have the Bot act out the individual instructions: forward means step one square
forward, and left and right mean a 90 degree turn on the spot in the square (not
moving to another square).

Teacher: “We’re going to write our own program that gets the rocket to fly to Mars. The
goal is to get the rocket to the square that Mars is in. Let’s write the first two steps on
the board together.” (Draw two forward arrows.)

“So let’s try that, and see what happens.

“Tester - could you please take these instructions and pass them onto the Bot. Be
ready to underline what doesn’t work when you see the Bot doing something that
doesn’t look right, and hand the whiteboard back to me to figure out how to fix the
bug.”

Teacher: “Bot - please pick up the rocket ready to receive the instructions for the tester.”
(The bot can carry a toy or token representing the rocket; or they can imagine that they
are guiding it).

Tester then reads off the board: “move forward, move forward.”

This activity utilises the CS Unplugged material and is released under Creative Commons CC BY-SA 4.0.

Rocket to Mars program:

“Tester, did the program run as
you expected it to?” Depending on
the tester’s response, if it did then
carry on programming, otherwise
fix what didn’t work and run that
again. In this example the rocket
should be in the square three to
the left of Mars.

Now let’s add to it. What would we
program next?

Point to where the next piece
of code needs to be added and
add turn right, turn right. (This is
deliberately incorrect.)

Rocket to Mars program:

“I think it’s ready to test now.
Tester, please test my program
(the programmer hands the
program on the whiteboard to the
tester and the bot should return
to the starting square ready to
rerun the program”.

Teacher: “Remember Tester, it’s
your job to find any “bugs” in
my program. A bug is when my
program isn’t doing what was
expected. Your job is to draw
a line under the piece of code
where they notice the instructions
seem to be going wrong. You can
stop the Bot at the point that you
think there is a bug.

Tester then reads the instructions in the program off the board and the Bot executes
them as they are read.

1. Move forward
2. Move forward
3. Turn right
4. Turn right

Teacher: “Excellent, you found a bug! I love finding bugs, so I can start solving them.
Now class, let’s work through this together to find my bug. Tester, you’ve done a great
job finding it, but it’s the programmer’s job to find and fix the bug.”

This activity utilises the CS Unplugged material and is released under Creative Commons CC BY-SA 4.0.

Once the bug has been identified
then ask the Tester to test again.
Ask the Bot to pick up the rocket
and go back to the start position,
then the Tester reads them the
instructions.

Did we successfully program the
rocket to land on Mars? How do
we know?

Are there other ways we could
have programmed the rocket to
get to Mars? (There will be lots of
ways; for example, Right, Forward,
Forward, Forward, Left, Forward,
Forward will work.) Discuss the
programming options and test
each one. What if we want the
rocket to get to Mars, and then
come back safely?

Have the students choose their own two toys (one to be a space travelling object, the
other to be the destination) and have them practise this task, as follows.

5. Place the traveller on a square on the edge of the grid, facing inwards.

6. Place the destination toy inside the grid.

7. The programmer writes down the program on a whiteboard.

8. The tester then takes the whiteboard and a different coloured whiteboard pen.
The tester tells the Bot each instruction in the program. The tester puts a tick next
to the code that is correct and underlines when the code is different to what the
Bot should be doing. If this happens the Tester says “Stop” and the Bot stops and
goes back to the start. The Tester gives the whiteboard to the Developer, who then
debugs the code, and gives the Tester a revised version.

9. Repeat step 4 until the program is free of bugs and works as intended.

10. Change roles and move the Bot (space travelling object) starting point and the toy that
represents the destination until everyone has had a turn

Extending The Lesson
It’s quite common to think that programming is some kind of special talent that people
either have or don’t have, but this couldn’t be further from the truth!

Like all skills, programming is something you learn through practise, making mistakes,
and learning from them. The most important skill that programmers need is to be able
to communicate with others, especially when they are finding and describing bugs.

Bugs happen all the time in programming, so being able to identify where the bug
occurs and problem solving how to fix it is incredibly important. It doesn’t matter how
experienced you are at programming, there will always be bugs that need to be found
and fixed. That’s why the word “debugging” is so important to programmers.

This activity utilises the CS Unplugged material and is released under Creative Commons CC BY-SA 4.0.

